Utilisation of deep learning for COVID-19 diagnosis

Abstract

The COVID-19 pandemic that began in 2019 has resulted in millions of deaths worldwide. Over this period, the economic and healthcare consequences of COVID-19 infection in survivors of acute COVID-19 infection have become apparent. During the course of the pandemic, computer analysis of medical images and data have been widely used by the medical research community. In particular, deep-learning methods, which are artificial intelligence (AI)-based approaches, have been frequently employed. This paper provides a review of deep-learning-based AI techniques for COVID-19 diagnosis using chest radiography and computed tomography. Thirty papers published from February 2020 to March 2022 that used two-dimensional (2D)/three-dimensional (3D) deep convolutional neural networks combined with transfer learning for COVID-19 detection were reviewed. The review describes how deep-learning methods detect COVID-19, and several limitations of the proposed methods are highlighted.

Publication
Clinical Radiology
Shahab Aslani
Shahab Aslani
Senior Research Fellow

Centre for Medical Image Computing

Joseph Jacob
Joseph Jacob
Principal Investigator

Wellcome Trust Fellow